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Abstract

Quasi-steady theory shows that the galloping response of a square cylinder exhibits a hysteresis phenomenon. The

equation of motion, which was derived based on a seventh-order polynomial curve fit on the side force (Cy) versus angle

of attack (a) curve, shows that the number of positive real roots corresponds to the number of stationary oscillation

amplitudes. In this investigation, we use polynomials of even higher order (ninth and eleventh) to curve fit the Cy versus

a curve, in an attempt to see if additional positive real roots occur, which may reveal even more flow physics. The results

show that only extra negative real roots and/or complex roots are obtained when higher than seventh-order polynomial

curve fits are used. Hence, the use of a seventh-order polynomial curve fit in the quasi-steady theory is shown to be

sufficient in describing the flow physics which includes the prediction of the hysteresis phenomenon.

r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Some bluff bodies immersed in a flow are susceptible to flow-induced vibrations. Transverse translational galloping

has been known to affect bluff bodies with a substantial afterbody (the part downstream to flow separation positions)

because its cause was traced to the interaction between the separated shear layers and the corresponding side-faces of

the body. One of the most investigated bluff bodies of this category is the square cylinder (prism). The square cylinder

will begin to gallop when the magnitude of the normal force (which derives from the difference in suction between its

two sides) is large enough to overcome inertia and resistive (if any) forces.

A successful theory to predict the galloping response in square-cylinder flow was first proposed by Parkinson and

Brooks (1961) and later in a refined version by Parkinson and Smith (1964). Known as the quasi-steady theory, it

models the galloping oscillation as a linear elastic system. As the cylinder oscillates transversely with velocity _y in the

free stream, the instantaneous flow velocity vector is seen to approach the cylinder at an angle of incidence (a); the

theory further assumes that the instantaneous transverse (or normal) fluid force acting on the oscillating cylinder is the

same as the transverse force (Cy) acting on a stationary square cylinder placed at a corresponding a (and hence ‘‘quasi-

steady’’). It is well known that at moderate to high Reynolds number (Oð103Þ and above), the Cy with a variation for a

stationary square cylinder contains a point of inflection. Parkinson and Brooks (1961) used a fifth-order polynomial to

approximate their Cy versus a data, while Parkinson and Smith (1964) used a seventh-order polynomial curve fit to

capture the inflection point. The polynomial coefficients obtained from the curve fit of the Cy versus a data act as inputs
e front matter r 2004 Elsevier Ltd. All rights reserved.
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to the equation of motion and the equation is solved for positive real roots. These roots correspond to the stationary

oscillation amplitudes (Ȳ ) of the galloping response at different reduced velocity (U). The quasi-steady theory (with a

seventh-order polynomial) successfully predicts the hysteresis phenomenon in the galloping oscillation amplitude and

this was verified experimentally in Parkinson and Smith (1964). Luo et al. (2003) concluded that the existence of the

inflection point in the Cy versus a plot is a necessary condition for the existence of galloping hysteresis and it is related to

the strong shear layer reattachment to the side face of the square cylinder.

The accuracy of the predictions from the quasi-steady theory is dependent on the faithful representation of the Cy

versus a data by the polynomial curve fits. The work of Parkinson and Brooks (1961) and Parkinson and Smith (1964)

has already demonstrated the superiority of the seventh-order polynomial fit over that of the fifth order, because only

the former can capture the point of inflection in the Cy versus a relation and subsequently the hysteresis in the Ȳ versus

U relation. In view of this, one naturally questions whether a higher than seventh-order polynomial fit will lead to even

better prediction and the occurrence of more positive real roots, which translates to the existence of even more

stationary oscillation amplitudes. These interesting queries were first raised in our correspondence with one of the

reviewers of our previous paper (Luo et al., 2003), whose input is gratefully acknowledged here; and in the present work

the authors’ objective is to provide the answers to the queries raised.

In this paper, we make use of three sets of Cy versus a data, namely the experimental data from Parkinson and Smith

(1964), and Luo and Bearman (1990) for high Reynolds number (Re) flows, and our recent numerical data from Luo et

al. (2003) for moderate Re flow. Next, seventh, ninth and eleventh-order polynomial curve fits are used to approximate

all the Cy versus a data and the respective polynomial coefficients are extracted. The equation of motion is solved in

order to determine the number of positive real roots (or stationary oscillation amplitudes) and whether extra roots come

along when higher-order polynomial curve fits are used.
2. Polynomial curve fit and equation of motion

The force coefficient Cy, measured on a stationary square cylinder at different angle of incidence a, is usually

expressed as a polynomial function of a. In the quasi-steady theory analysis, for convenience the variable is expressed as
_y/U ( ¼ tan a). The Cy versus a data from Parkinson and Smith (1964) and Luo and Bearman (1990) are re-plotted in

Fig. 1(a) for a range of a ¼ �151 to 151 (or tan a ¼ �0.2679 to 0.2679), while similar data from Luo et al. (2003) are

presented in Fig. 1(b) for an a range of �101 to 101 (or tan a ¼ �0.1763 to 0.1763). The data collected from the first two

studies showed fairly good agreement as both were performed experimentally at similar high Re flows of Oð104Þ (and

henceforth known as high Re data). The Cy versus a data from Luo et al. (2003) was obtained numerically at a lower,

Reynolds number, Re ¼ 1000, (and is henceforth referred to as moderate Re data). Nevertheless, all three sets of data

show a similar trend and the characteristic inflection point is present in all of them.

Next, by using Microsoft Excel (with an add-on function known as XlXtrFunTM), seventh, ninth and eleventh-order

polynomials are fitted onto the high Re data of Luo and Bearman (1990) (in the range of �14.51pap14.51) and the

moderate Re data of Luo et al. (2003) (in the range of �81pap81) and they are also shown in Fig 1(a) and 1(b),

respectively. Both figures show that there is no significant discrepancy among the fitting of the three polynomials. The

important curvature changes in the Cy versus a variation are captured by all the three polynomial curve fits. In Fig 1(a),

the seventh-order polynomial curve fit from Parkinson and Smith (1964) is also included. For both the high and

moderate Re flows, the polynomial curve fit is given in the form

Cy ¼ A
_y

U

� �
þ B

_y

U

� �3

þ C
_y

U

� �5

þ D
_y

U

� �7

þ E
_y

U

� �9

þ F
_y

U

� �11

: (1)

We use the symbols A to F to represent the coefficients of the lowest to the highest order ( _y/U) term in the polynomial.

It is obvious that for polynomial curve fits that are of lower order than Eq. (1), the corresponding higher-order term

coefficient(s) is (are) zero; (that is, F ¼ 0 for a ninth-order polynomial and both E and F ¼ 0 for a seventh-order

polynomial). Note that we use positive signs for all the coefficients and this differs from the convention adopted in

Parkinson and Smith (1964), where alternating signs were used, and where A to D themselves are positive numbers. We

have adopted this new convention because we noted that the coefficients for the ninth and eleventh-order polynomial

curve fits may not be positive if we adopt Parkinson and Smiths’ alternate sign convention. Hence, for clarity, we

include the signs of the polynomial coefficients below and the correct equation can be obtained by substituting the

required coefficients, together with its sign, into Eq. (1). The coefficients of the polynomial curve fits are as shown in

Table 1.
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Fig. 1. (a) The Cy versus a data from Parkinson and Smith (1964) (J) and from Luo and Bearman (1990) (&). Seventh, ninth and

eleventh-order polynomial curve fits are applied to the data of Luo and Bearman (1990) at high Re. Also shown is the seventh-order

polynomial curve fit by Parkinson and Smith (1964). (b) The Cy versus a data from Luo et al. (2003) (&). Seventh, ninth and eleventh

order polynomial curve fits are applied to these data for moderate Re flow.

Table 1

Coefficients of polynomial curve fits

A B C D E F

High Re

7th order 3.303 �208.71 7042.7 �67,104

9th order 3.037 �140.46 2781.6 27,992 �696,370

11th order 3.043 �142.56 2988.27 20,008 �563,885 �790,856

Moderate Re

7th order 3.808 �640.38 63,202 �1,784,690

9th order 3.595 �483.84 32,785 363,215 �49,727,434

11th order 3.555 �436.51 22,876 1,033,173 �63,301,669 �44,800,000
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To illustrate the goodness of fit among the three polynomials and at the two different Reynolds numbers, the

corresponding correlation coefficients and sums of squared error were also computed and tabulated in Table 2. The

trends of these data demonstrate (as expected) that the correlation coefficient increases and the sum of squared error

decreases when the order of the polynomial is increased. However, it is also clear that the improvement obtained by

using a polynomial higher than seventh-order is insignificant. For example, the correlation coefficients for all three
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Table 2

Correlation coefficient and the sum of squared error for the three polynomials and at the two Reynolds number

7th order 9th order 11th order

Moderate Re

Sum of squared error 1.554788� 10�3 1.444595� 10�3 1.435142� 10�3

Correlation 0.992511 0.998775 0.998783

High Re

Sum of squared error 0.0115 0.0043 0.0014

Correlation 0.9982 0.9993 0.9997
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polynomials are 0.99+. Improvement only takes places from the third decimal place (less than 1%). This comparison

therefore further demonstrates that the seventh-order polynomial provides a good enough fit for the data in the a range

stated.

From quasi-steady theory, the equation of motion will have additional terms when higher-order polynomial curve fits

are used for approximating the Cy versus a relation. Uninitiated readers can consult Parkinson and Smith (1964) on the

details of the derivation of these additional terms. The equations of motion based on the respective polynomial curve

fits are given as follows:
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Ȳ

4

�

þ
5

8

C

AU3

� �
Ȳ

6
þ

35

64

D

AU5

� �
Ȳ
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In the above equations, Ȳ is the dimensionless amplitude of oscillation, t is the dimensionless time, the parameter n is

half the ratio of displaced air mass to cylinder mass and b is the system damping coefficient. If we define R ¼ Ȳ
2

in

accordance with Parkinson and Smith (1964), we can rewrite the above three equations in a simplified form,

dR

dt
¼ aR þ bR2 þ cR3 þ dR4 þ eR5 þ fR6 ¼ F ðRÞ: (5)

The coefficients a to f refer to the corresponding collected coefficients found in Eqs. (2–4). As before, the coefficients f

and e will be zero for polynomials with order lower than 11 and 9, respectively. The stationary oscillation amplitudes

(or positive real roots) of the galloping response correspond to the condition when dR/dt ¼ 0. Parkinson and Smith

(1964) solved the equation of motion for a seventh-order curve fit and found that besides the root R ¼ 0; the equation

can either have one or three positive real root(s). They further classified these roots into stable and unstable roots

depending on the slope of the FðRÞ curve.

At the onset, by looking at Eq. (5), it seems that more positive real roots will be available if a higher-order polynomial

is curve-fitted onto the data. However, further investigation suggests otherwise. In this paper, Eq. (5) that corresponds

to the seventh, ninth and eleventh-order polynomial curve fit is solved for its positive real roots (stationary oscillation

amplitude) for the high Re case only. This is shown in Fig. 2 as a universal oscillation amplitude ðnA=2bÞȲ versus
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reduced velocity ðnA=2bÞU plot. The figure shows that the hysteresis phenomenon in galloping oscillation is reflected in

all three curves. At a reduced velocity just before the hysteresis region, one positive real root (stable root) is present. In

the hysteresis region, three positive real roots (two stable and one unstable root) are present, and beyond the hysteresis

region, one positive real root (stable root) is present. There are no extra positive real roots when a higher order

polynomial curve fit is employed. Comparison of the three sets of the present data (arising from the three different

polynomial fits) suggests that they are quite close to each other. On the other hand, comparison of the present data with

those of Parkinson and Smith (1964) showed some disagreement. This is due to the use of different polynomial

coefficients in the approximation of the Cy versus a relation shown in Fig. 1(a). This disagreement was also noted by

Norberg (1993) when he used a different seventh-order polynomial curve to approximate the Cy versus a relation at a

different Re.

Since the use of higher-order polynomial curve fits does not result in the emergence of more positive real roots, we

can conclude that negative R roots and pairs of complex conjugate roots appear after solving Eq. (5). These roots are

discarded because R ¼ Ȳ
2
: We are able to know the number of positive or negative roots in a polynomial by counting

the number of sign changes in the polynomial, based on Descartes’ Rule of Sign (Henrici, 1988). To paraphrase the

Descartes’ Rule of Sign,

‘‘The number of positive roots of a polynomial, F ðRÞ; with real coefficients is equal to the number of ‘changes of

sign’ in the list of coefficients, or is less than this number by a multiple of 2. And the number of negative roots of the

same polynomial is equal to the number of sign changes found in F ð�RÞ or is less by a multiple of 2’’.

With this rule in mind, we look at the Eq. (5) that corresponds to an eleventh-order polynomial curve fit as an

example,

F ðRÞ ¼ aR � bR2 þ cR3 þ dR4 � eR5 � fR6 ¼ 0

ðafter noting the signs of coefficients A to F in Table 1Þ

a � bR þ cR2 þ dR3 � eR4 � fR5 ¼ 0

ðwhere R ¼ 0 is one of the rootsÞ:

(6)

There are three sign changes (i.e. +a to �b, �b to +c and lastly +d to �e) and hence, by Descartes’ Rule of Sign,

there should be either 3 positive roots or 1 positive root (the number of changes of sign, less a multiple of 2). These two

possible combinations coincide exactly with the curve shown in Fig. 2 when a hysteresis region is present. When a single

positive root is present, this will coincide with the regions corresponding to velocity that are either lower or higher than

the hysteresis region. Within the hysteresis region, three positive roots are present. To obtain the number of negative

roots, Eq. (6) is rewritten as Fð�RÞ;

F ð�RÞ ¼ a þ bR þ cR2 � dR3 � eR4 þ fR5 ¼ 0: (7)

There are two sign changes and hence there are either two negative roots or none. However from the definition of

R ¼ Ȳ
2
; both complex and negative roots are neglected in the analysis. Since F ðRÞ; for an eleventh-order curve fit, is a
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Fig. 2. A hysteresis region is captured in the universal amplitude–velocity characteristic when polynomials of order seven or higher are

used to approximate the Cy versus a relation.
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6th order polynomial, we expect 6 roots with the following four combinations: R ¼ 0, 2 negative roots, 1 positive root,

and a pair of complex roots, {R ¼ 0, 2 negative roots, 3 positive roots, and no complex roots}, {R ¼ 0, no negative root,

1 positive root and 2 pairs of complex roots} and {R ¼ 0, no negative root, 3 positive roots, and a pair of complex

roots}.

Descartes’ Rule of Sign will yield similar results when applied to Eq. (5) for a ninth-order polynomial curve fit. The

number of positive real roots will remain unchanged at either one or three, while the extra roots will either be negative

real roots or complex conjugate pairs. The earlier doubt on whether a higher-order polynomial fit will result in more

oscillation amplitudes and multi-branch hysteresis is thus shown to be an unnecessary concern.
3. Conclusion

In the present work, we have shown that the use of higher (than the commonly used seventh) order polynomials to

approximate the Cy versus a relation neither results in a significantly better fit nor in any additional positive real roots

from its equation of motion. As a result of the latter, we do not expect to see any additional stationary oscillation

amplitudes in the square cylinder galloping response. Although the equation of motion derived from quasi-steady

theory contains higher-order terms, the extra roots turn out to be either negative or complex and hence they can be

discarded. By using Descartes’ Rule of Sign, we showed that the changes in sign of the seventh, ninth and eleventh-order

polynomials are such that they all point to the existence of either one or three positive real root(s). In Luo et al. (2003),

we demonstrated that in order to capture the hysteresis phenomenon in the Ȳ versus U relation for a square cylinder,

the use of a seventh-order polynomial in representing the Cy versus a relation in Parkinson’s quasi-steady theory is

necessary. In this note, we further demonstrate that a seventh-order polynomial is also sufficient. The use of a

polynomial with an order higher than seven neither results in a significantly better fit nor in additional oscillation

amplitudes.
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